男男gay互操-男男gay高h樱花动漫在线观看-男男gaytwinkchinese-男男gaysgay亚洲网站-91午夜精品亚洲一区二区三区-91午夜精品午夜剧场

歡迎進入安科瑞電氣股份有限公司!
技術(shù)文章
首頁 > 技術(shù)文章 > 關(guān)于有源濾波器在礦區(qū)配電網(wǎng)電能質(zhì)量中的應(yīng)用研究

關(guān)于有源濾波器在礦區(qū)配電網(wǎng)電能質(zhì)量中的應(yīng)用研究

 更新日期:2024-08-27 點擊量:821

摘要:針對目前有源濾波器應(yīng)用于礦區(qū)諧波治理時電網(wǎng)頻率適應(yīng)能力較低的問題,針對定采樣點數(shù)字控制系統(tǒng)提出了一種具有頻率自適應(yīng)能力的諧振控制策略。該策略不僅可以實現(xiàn)對電網(wǎng)頻率波動的自適應(yīng),提高濾波器補償效果,而且不需要在線對控制器參數(shù)進行更新,算法簡單。*后通過實驗驗證了所提方法的可行性和有效性。

關(guān)鍵詞:礦區(qū)諧波治理;有源濾波器;頻率波動;自適應(yīng)

0引言

隨著電力電子技術(shù)的快速發(fā)展,以晶閘管為代表的相控整流裝置在礦業(yè)生產(chǎn)中得到越來越廣泛的應(yīng)用。然而,相控整流器在運行時會在電網(wǎng)中產(chǎn)生大量諧波,尤其是礦區(qū)電網(wǎng)通常位于相對偏遠的地區(qū),電網(wǎng)等效阻抗較大,諧波電流的注入會導致機端電壓的進一步畸變,嚴重影響到礦區(qū)電網(wǎng)的質(zhì)量,威脅到敏感用電負荷的安全運行,給整個礦區(qū)的生產(chǎn)帶來安全隱患。

采用安裝無源濾波器的方法一定程度上可實現(xiàn)濾波的作用,但是其濾波效果會受到電網(wǎng)等值阻抗等參數(shù)的影響,此外,在參數(shù)選擇不合適時可能引發(fā)諧振,導致濾波器燒毀。與無源濾波器相比,以IGBT為開關(guān)元件的有源濾波器(APF)具有多種優(yōu)點,比如補償效果不受電路參數(shù)影響、可選次諧波濾除等,近年來在礦區(qū)電網(wǎng)中的應(yīng)用越來越廣泛。

為了提高有源濾波器對諧波指令的跟蹤精度,目前通常采用基于內(nèi)模原理的諧振控制器。諧振控制器具有對諧振頻率處交流信號無靜差跟蹤的能力,然而,實際中電網(wǎng)的頻率并非固定不變,而是在50Hz(對我國電網(wǎng)來講)附近波動,通常波動范圍為±0.5Hz。實際中電網(wǎng)頻率的波動將導致諧振控制器的頻率與實際諧波頻率不一致,降低控制器的跟蹤能力,進而影響到有源濾波器的諧波補償效果。為此,本文針對定采樣點APF控制系統(tǒng),提出了一種具有電網(wǎng)頻率自適應(yīng)能力的諧振控制器數(shù)字算法。由于充分利用了定采樣點控制系統(tǒng)的特點,在實現(xiàn)頻率自適應(yīng)的同時,保證了諧振控制算法中參數(shù)的常數(shù)化,即無需在電網(wǎng)頻率變化時對控制參數(shù)進行調(diào)整,不僅算法簡單,而且增強了APF對電網(wǎng)頻率的魯棒性。*后通過實驗驗證了改進控制策略的可行性和有效性。

1APF控制系統(tǒng)的數(shù)學模型與比例系數(shù)設(shè)計

三相APF的主電路及自然坐標系下的電流控制原理如圖1所示。三相MPR控制器的輸出首先與對應(yīng)相的電網(wǎng)電壓疊加在一起構(gòu)成電網(wǎng)電壓前饋,再和三角載波進行比較生產(chǎn)各開關(guān)管的PWM信號。

假設(shè)三相系統(tǒng)對稱,此時可將三相系統(tǒng)等效為3個獨立的單相系統(tǒng)進行建模,以A相為例,此時根據(jù)圖1可得自然坐標系下APF的輸出電流控制框圖。

如圖2所示

9d084b2343f8f6864cc2d23811f9c429_7e76758f5a38489483e7f978cc1d5bb7.png

圖1APF系統(tǒng)中電流諧振控制原理

uga、ugb、ugc,三相電源電壓Lf、Rf,并網(wǎng)濾波電感及其等值電阻iga、igb、igc,APF的三相輸出電流Udc、直流側(cè)電壓MPR、多諧振控制器iga、ref、igb、ref、igc、ref,APF的三相輸出電流給定,其中包含了控制直流側(cè)電壓平均值恒定所需的有功電流分量和諧波電流指令。

c9dd8872b2d2e59402a94636886eec01_3b14a71f52f9420caa674d279fc655de.png

圖2自然坐標系下APF輸出電流控制框圖GMPRs

GMPR(s):多諧振控制器的傳遞函數(shù),Gd(s):數(shù)字控制和PWM調(diào)制引入的延時傳遞函數(shù),通常取1.5個開關(guān)周期GL(s)被控對象傳遞函數(shù),即APF輸出濾波電感

73065885dd8bb2a22d0cb243c217c8c0_0662c39e292f42d9abc20271bac58244.png

式中Ts———采樣周期。

本文APF在1個基波周期的采樣點數(shù)為200,對應(yīng)的采樣周期Ts=0.0001s。

多諧振控制器的主要作用是在相應(yīng)諧振頻率下提供較大增益,使得系統(tǒng)的穩(wěn)態(tài)誤差較小,為了保證系統(tǒng)在暫態(tài)過程中的響應(yīng)速度,實際中應(yīng)將多諧振控制器與比例控制器并聯(lián)使用。由于系統(tǒng)的響應(yīng)速度,即系統(tǒng)的開環(huán)穿越頻率基本不受多諧振控制器的影響,其主要受比例系數(shù)的影響,因此在設(shè)計系統(tǒng)開環(huán)穿越頻率時可以不考慮多諧振控制器,僅僅考慮比例控制器的作用,根據(jù)圖2可得此時系統(tǒng)的開環(huán)傳遞函數(shù)為:

68b3a0e6d4e49c5e3cb07573db71fd85_8efc6373906443c29aa244be90651d39.png

式中Kp——比例系數(shù)。

對于數(shù)字控制的電力電子變流器,綜合考慮系統(tǒng)的穩(wěn)定裕度和動態(tài)響應(yīng)速度,通常將系統(tǒng)的開環(huán)穿越頻率設(shè)置為采樣頻率的1/10。文中APF系統(tǒng)的主要參數(shù):

43f15718bac1248c5964a35bd22d5cdf_4e7b78cf5dcb4b74a755b745ab0b949b.png43f15718bac1248c5964a35bd22d5cdf_4e7b78cf5dcb4b74a755b745ab0b949b.png

根據(jù)以上參數(shù),結(jié)合式(1)、式(2)和式(3)可知,將系統(tǒng)的開環(huán)穿越頻率設(shè)置在1kHz時,應(yīng)取比例系數(shù)Kp=3.1,此時系統(tǒng)的開環(huán)bode圖如圖3所示。

152a0f294896734daf536981a019b770_5c72127775c746358c378254cd58278f.png

圖3僅比例控制器下APF開環(huán)控制系統(tǒng)的bode圖

2傳統(tǒng)和改進選振控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

(1)傳統(tǒng)PR控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

單一的諧振控制器能夠在其諧振頻率下提供較大的增益可大幅提高控制系統(tǒng)對諧振頻率下交流信號的跟蹤能力。其在,s域下可表示為:

dba642f23b5765e17545f12ebc78114c_0c9cfcccc7234762a9a12f068b53c2d0.png

在數(shù)字控制系統(tǒng)中,首先要將式(4)所描述的PR控制算法進行離散化。需要注意的是,不同的離散化算法對PR控制器的性能會有較大影響,比如,采用后向差分或雙線性變換對式(4)進行離散化時會導致諧振峰偏移,且這種影響隨著PR控制器諧振頻率的增大而增大,因此,實際中多采用預修正的Tustin變換對式(4)進行離散化,從而避免離散化后PR控制器諧振峰的偏移。采用預修正Tustin變換時s域到z域的映射關(guān)系。

57b81d8f5386af58830233d7094ebc2f_6f0b484094364aeeae2d28d80f645505.png

將式(5)代入到式(4)可得傳統(tǒng)諧振控制器的離散域描述

57b81d8f5386af58830233d7094ebc2f_6f0b484094364aeeae2d28d80f645505.png

式(6)和式(7)表明,傳統(tǒng)的諧振控制器離散城算法中包含了采樣周期T、以及諧振頻率,對于定采樣頻率APF控制系統(tǒng)來講,由于T是不變的,PR控制器的諧振頻率只與有關(guān)。如果在控制中采用恒定的,當實際中電網(wǎng)頻率出現(xiàn)波動時,兩者將出現(xiàn)偏差,從而降低諧振控制器的跟蹤性能。以諧振頻率為7次諧波為例,傳統(tǒng)PR的幅頻特性如圖4所示。可見當電網(wǎng)頻率為理想的50Hz時控制器在350Hz處具有非常大的增益,說明此時PR控制器對7次諧波的跟蹤能力較強,但是當電網(wǎng)頻率在+0.5Hz范圍內(nèi)波動時,將導致7次諧波的頻率在+3.5Hz范圍內(nèi)波動。由圖4中諧振頻率附近的放大圖可知。隨著電網(wǎng)頻率的波動,PR控制器的增益將發(fā)生劇烈變化,比如在346.5Hz及353.5Hz處的增益下降至接近0。說明此時APF系統(tǒng)對7次諧波的跟蹤能力大幅下降。可見傳統(tǒng)的PR控制器對電網(wǎng)頻率的魯棒性較低,電網(wǎng)頻率微小的波動可能導致APF補償效果大幅下降。

3a8054bb13f2309e2cd605f902c020c7_8afa898850364de8abf0034dedfedc83.png

(2)改進PR控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

目前并網(wǎng)變流器的數(shù)字控制系統(tǒng)主要有定采樣頻率控制系統(tǒng)和定采樣點數(shù)控制系統(tǒng)2種。對于定采樣點數(shù)控制系統(tǒng)來講,即使電網(wǎng)頻率發(fā)生波動,通過鎖相環(huán)的調(diào)節(jié)作用也可保證1個工頻周期的采樣點數(shù)不變。為了充分利用固定基波周期采樣點數(shù)控制系統(tǒng)的特點,此處引入改進型PR控制器,其離散域描述為:

04477b4898b5e4082483a409c3f4db79_870f37f9b40b4ff3afbc44316ea99163.png

本文中APF的控制周期為10kHz,1個工頻周期的采樣點數(shù)n=200。式(8)表明,在定采樣點數(shù)控制系統(tǒng)中,改進后PR控制器數(shù)字化算法中的所有參數(shù)均為常數(shù),即當電網(wǎng)頻率存在波動時,不必根據(jù)變化后的電網(wǎng)頻率對PR控制器的諧振頻率進行頻繁的調(diào)節(jié),大大簡化了控制系統(tǒng)的結(jié)構(gòu),實現(xiàn)了PR控制器諧振頻率與電網(wǎng)頻率的自適應(yīng)。

以7次諧波為例,電網(wǎng)頻率在±0.5Hz范圍內(nèi)波動時PR控制器幅頻特性的變化如圖5所示,可見當電網(wǎng)頻率為50Hz,即7次諧波頻率為350Hz時PR控制器的諧振頻率為350Hz;當電網(wǎng)頻率為49.5Hz,即7次諧波頻率為346.5Hz時PR控制器的諧振頻率自動減小至346.5Hz;當電網(wǎng)頻率為50.5Hz,即7次諧波頻率為353.5Hz時PR控制器的諧振頻率則自動增大至353.5Hz。可見電網(wǎng)頻率的波動不會影響到PR控制器在7次諧波處的增益,即不會影響APF系統(tǒng)對7次諧波的跟蹤能力,說明改進的PR控制器對電網(wǎng)頻率的魯棒性較強,電網(wǎng)頻率的波動不會影響APF系統(tǒng)的諧波補償效果。

bf5ae8c2ed4b7b1447ff68e14e62660d_a3c3b824026c4a56ad084543dd3a03bb.png

圖5改進PR控制器的電網(wǎng)頻率魯棒性分析

3實驗驗證

為了進一步驗證上述理論分析的正確性,搭建了額定電流為100A的APF實驗平臺,系統(tǒng)開關(guān)頻率為10kHz,即系統(tǒng)在1個周波內(nèi)的采樣點數(shù)為200由于實驗條件限制,實驗中無法對電網(wǎng)頻率進行修改,鑒于正常工況下電網(wǎng)頻率并不是嚴格的50Hz.因此采用對比的方法驗證改進諧振控制策略的有效性。將傳統(tǒng)PR控制諧振頻率設(shè)定為固定的50Hz時的實驗結(jié)果如圖6所示,由圖6可見補償后的網(wǎng)側(cè)電流雖得到一定程度的改善,但是仍含有較大的諧波,通過將示波器數(shù)據(jù)導出至MATLAB后分析表明,此時網(wǎng)側(cè)電流的THD為8.3%。作為對比,相同工況下采用改進PR控制后的實驗結(jié)果如圖7所示,由圖7可見補償后的網(wǎng)側(cè)電流質(zhì)量得到明顯提高,說明具有頻率自適應(yīng)能力的諧振控制算法對給定指令的跟蹤能力較強,此時網(wǎng)側(cè)電流的THD為3.7%。

上述仿真和實驗結(jié)果驗證了改進PR控制算法的有效性。

d840b5b513b2e085f33a45a1a8d9ec1a_7501661a3cc24e3e954de686bc1657d3.png9c9adf93cb1d4819f101a379b21ff9f0_2f0a2e33defa4ff092f09de7aa4810e2.png

4 安科瑞APF有源濾波器產(chǎn)品選型

4.1產(chǎn)品特點

(1)DSP+FPGA控制方式,響應(yīng)時間短,全數(shù)字控制算法,運行穩(wěn)定;

(2)一機多能,既可補諧波,又可兼補無功,可對2~51次諧波進行全補償或特定次諧波進行補償;

(3)具有完善的橋臂過流保護、直流過壓保護、裝置過溫保護功能;

(4)模塊化設(shè)計,體積小,安裝便利,方便擴容;

(5)采用7英寸大屏幕彩色觸摸屏以實現(xiàn)參數(shù)設(shè)置和控制,使用方便,易于操作和維護;

(6)輸出端加裝濾波裝置,降低高頻紋波對電力系統(tǒng)的影響;

(7)多機并聯(lián),達到較高的電流輸出等級;

4.2型號說明

c1eb6573986e3ee6fcbe94471853cc6f_5d283a13bf1f4e85a2c9cfb416418959.png

4.3尺寸說明

89e76eaa413d5c87699c29499faff3ff_44e6a3c4d2204e2d9e5bc28e2f8c7f0f.png

image.png

4.4產(chǎn)品實物展示

1f8361bb90ae650a232fe3d240d241dc_e5c115d4da574dda91b3c1dbf4be17f7.jpeg4e25276fea375ebde4722a4032265852_66c724358c6f480d8c6b414227d8a5eb.jpeg

ANAPF有源濾波器

5安科瑞智能電容器產(chǎn)品選型

5.1產(chǎn)品概述

AZC/AZCL系列智能電容器是應(yīng)用于0.4kV、50Hz低壓配電中用于節(jié)省能源、降低線損、提高功率因數(shù)和電能質(zhì)量的新一代無功補償設(shè)備。它由智能測控單元,晶閘管復合開關(guān)電路,線路保護單元,兩臺共補或一臺分補低壓電力電容器構(gòu)成??商娲R?guī)由熔絲、復合開關(guān)或機械式接觸器、熱繼電器、低壓電力電容器、指示燈等散件在柜內(nèi)和柜面由導線連接而組成的自動無功補償裝置。具有體積更小,功耗更低,維護方便,使用壽命長,可靠性高的特點,適應(yīng)現(xiàn)代電網(wǎng)對無功補償?shù)母咭蟆?/p>

AZC/AZCL系列智能電容器采用定式LCD液晶顯示器,可顯示三相母線電壓、三相母線電流、三相功率因數(shù)、頻率、電容器路數(shù)及投切狀態(tài)、有功功率、無功功率、諧波電壓總畸變率、電容器溫度等。通過內(nèi)部晶閘管復合開關(guān)電路,自動尋找適宜投入(切除)點,實現(xiàn)過零投切,具有過壓保護、缺相保護、過諧保護、過溫保護等保護功能。

5.2型號說明

af8a5d4093c66a2b19726940e64d9d47_55dbac8a7dc24b2fa5a67dc109407522.png

AZC系列智能電容器選型:

1a51e144634cfd3976cc647e8b635450_adc0e1388f32447d8c827135177dbc53.jpeg

AZCL系列智能電容器選型:

7b311a130d99a64ca6db05771a5ca867_607e8aaa0c17453cb129b2268555feac.jpeg

5.3產(chǎn)品實物展示

67b5610aacc5f14971ed93a1dab7444a_43f0596b2fda4e00a8d9c48d63cbb121.png7a987748468509c994b8c5e547fe4955_c24a6e4cbc564e1b9685eab4f02ef6ce.png

AZC系列智能電容模塊AZCL系列智能電容模塊

安科瑞無功補償裝置智能電容方案

6結(jié)語

本文首先建立了三相APF的數(shù)學模型,并對傳統(tǒng)PR控制器的電網(wǎng)頻率魯棒性進行了分析,針對傳統(tǒng)PR控制器電網(wǎng)頻率魯棒性較低的問題和固定基波周期采樣點數(shù)控制系統(tǒng)的特點引入了改進的PR控制器離散化算法,該算法不僅實現(xiàn)了PR控制算法中參數(shù)的常數(shù)化,避免了電網(wǎng)頻率變化時對控制算法的頻繁調(diào)節(jié),而且對電網(wǎng)頻率的變化具有自適應(yīng)性,使得PR控制器的諧振頻率能夠自動追蹤電網(wǎng)頻率的變化,從而減小電網(wǎng)頻率波動對APF補償性能的影響。大幅提高諧振控制器對電網(wǎng)頻率的魯棒性,改善礦“區(qū)電網(wǎng)的質(zhì)量,實驗結(jié)果驗證了改進PR控制算法的有效性。

參考文獻

[1]唐筠.基于SVPWM算法的三電平有源電力濾波器的電壓空間矢量調(diào)制策略[J].煤礦機械,2017,38(8):14-127.

[2]侯梁,李博森,井敬.自適應(yīng)有源濾波器在礦區(qū)配電網(wǎng)中的應(yīng)用研究[J].煤礦機械,2020,41(01):145-148.DOI:10.13436/j.mkjx.202001049.

[3]安科瑞企業(yè)微電網(wǎng)設(shè)計與應(yīng)用手冊2022.05版.


老司机亚洲精品影院| 丰满人妻被黑人猛烈进入| 日韩人妻无码精品专区90618| 富婆推油偷高潮叫嗷嗷叫| 亚洲AV成人一区二区电影在线| 久久久久久无码AV成人影院| 久久精品亚洲日本波多野结衣| 搡老女人911熟妇老熟女| 国产精品免费AV片在线观看| 亚洲国产精品久久久久久| 蜜桃国产乱码精品一区二区三区w 蜜桃国产乱码精品一区二区三区 蜜桃国产精品乱码一区二区三区 蜜桃传媒在线观看免费版7 | 亚洲精品性爱av| 男女狂进狂出动态图| 多毛freeoprn熟妇多毛y| 亚洲V欧美V日韩V国产V| 男生坤坤放在女生坤坤里开元棋| 催眠~凌~辱~学园 在线观看| 亚洲AV影院一区二区三区| 免费观看大片的APP视频| 丁香五月天天综合亚洲| 亚洲国产精品无码久久青草| 欧美黑人巨大精品VIDEOS| 国产极品美女高潮无套| 夜夜夜高潮夜夜爽夜夜爰爰| 日本喷奶水中文字幕视频| 国内自产少妇自拍区免费| 14表妺好紧没带套18分钟| 熟女高潮精品一区二区三区| 久久AV伊人蜜臀一区二区 | 亚洲乱码尤物193YW| 欧美最猛黑人XXXⅩ猛男视频| 国产精品毛多多水多| 一区二区三区无码在线观看| 日韩精品内射视频免费观看| 护士被强女千到高潮视频| AV无码久久久久不卡网站蜜桃| 无码人妻一区二区三区免费看 | 女的用嘴巴吃鸡会得HPV| 国产XXXX99真实实拍| 亚洲愉拍自拍欧美精品APP| 人人妻人人做从爽精品| 黑人干人三区亚洲| JLZZ大全高潮多水| 亚洲AV永久无码精品无码电影| 欧美成人精品一区二区| 国产三级精品三级在专区| 337P粉嫩日本欧洲亚洲大胆| 无遮挡色视频真人免费不卡| 男男GV在线观看| 国产啪亚洲国产精品无码| 97成人无码免费一区二区中文| 无遮挡呻吟娇喘视频免费播放| 男生晚上睡不着想看B站| 国产日韩精品一区二区三区在线观| 2020国产精品久久久久精品| 性高湖久久久久久久久AAAAA| 欧美大肚子孕妇疯狂作爱视频| 国产麻豆精品久久一二三| 99精品视频在线观看婷婷| 亚洲AV福利天堂一区二区三| 强奷漂亮雪白丰满少妇| 精品国产A∨无码一区二区三区 | 亚洲最大无码成人网站4438| 少妇又爽又刺激视频| 麻豆精品一区二正一三区| 国产精品美女久久久久久 | 亚洲VA无码手机在线电影| 人妻 中文 无码 JAVHD| 精品久久国产综合婷婷五月| 成人无码无遮挡很H在线播放| 亚洲一本到无码AV中文字幕| 天堂8在线天堂资源BT| 妺妺窝人体色777777| 国内精品自线一区二区三区2| 锕锕锕锕锕锕~好痛APP下载| 亚洲人成人一区二区三区| 四虎成人精品国产永久免费无码| 美女脱个精光扒开尿口图片无遮挡| 国产日产欧产精品精品APP| 啊宝宝的扇贝真会夹C视频| 亚洲午夜性猛春交XXXX| 挺进邻居漂亮的娇妻| 欧美精品久久久久久精品爆乳| 精品人妻AV区波多野结衣| 国产AⅤ精品一区二区久久| 2022久久国产精品免费热麻豆 | 天天看片高清观看免费| 美女扒开屁股让男人桶GIF动态 | 舌头伸进去里面吃小豆豆| 免费稀缺拗女一区二区| 国精产品999一区二区三区有限| 被男人吃奶很爽的毛片| 一区二区三区国产好的精华液| 久久免费看少妇高潮V片特黄| 国产好大好硬好爽免费不卡| CHINESE农村野外XXXXVIDEOS| 亚洲精品成人网站在线| 天天躁夜夜躁很很躁| 欧美香蕉爽爽人人爽| 曰本丰满成熟xxxx精品| 色婷婷日日躁夜夜躁| 麻豆国产成人AV| 狠狠躁天天躁男人| 国产AV无码专区亚洲版综合| CHINESE粉嫩VIDEOS| 亚洲中文字幕日本无线码| 午夜不卡久久精品无码免费| 日本WV一本一道久久香蕉| 免费人成在线观看视频播放| 精品日产A一卡2卡三卡4卡乱| 国产精品成人一区二区三区 | 亚洲高清国产AV拍精品青青草原| 少妇精品无码一区二区三区| 欧美性爱一区二区三区| 雷神ちゃんが人気の原因| 极品少妇被黑人白浆直流| 国产精品久久久久久免费软件| 成本人无码H无码动漫在线网站| 中文字幕久无码免费久久| 亚洲色欲色欲WWW在线看小说| 精品人妻人人做人人爽| 国产精品人成视频免费播放| 纯肉无遮挡H肉动漫在线观看3D| 99精产国品一二三产区区| 艳妇乳肉豪妇荡乳AV无码福利| 亚洲AV蜜桃无码精品无码| 头埋入双腿之间被吸到高潮| 日本无人区一线影视| 欧美无人区码卡二卡3卡4乱码 | 国产一区二区三区在线视頻| 国产99久久久国产精品成人小说 | 久久人人妻人人妻人人澡av| 国内综合精品午夜久久资源| 国产精品多P对白交换绿帽| 从厨房一路干到卧室好吗| А√最新版地址在线天堂| 18禁无遮挡羞羞啪啪免费网站| 野花社区WWW官网在线观看| 亚洲乱色熟女一区二区三区蜜臀 | 成人福利国产午夜AV免费不卡在| 99国产精品久久久蜜芽| 中文字幕免费不卡二区| 一本大道香蕉在线精品 | 帅气小鲜肉自慰VIDEO| 日韩人妻高清精品专区| 人妻精品久久久久中文字幕| 欧美丰满美乳XXⅩ高潮| 内射人妻无码色AV麻豆| 麻花传媒免费网站在线观看| 久久在精品线影院精品国产| 久久精品国产亚洲7777| 精品无码人妻一区二区三区 | 嗯~使劲~别停~高H漫画| 办公室撕开奶罩揉吮奶头在线观看| 99RE8这里有精品热视频| 在线亚洲专区高清中文字幕| 一区二三区在线 | 中国| 艳妇乳肉豪妇荡乳AV| 亚洲中文字幕日产无码| 亚洲伊人成无码综合影院| 亚洲欧美日韩中文高清WWW| 亚洲精品无码乱码成人| 亚洲精品无码久久久久AV老牛| 亚洲成A人一区二区三区 | 色在线 | 国产| 日韩少妇激情一区二区| 日韩精品视频一区二区三区| 日韩精品无码专区免费播放| 日韩精品一二三区| 三上悠亚被弄到痉挛惨叫AV| 色欲蜜臀AV在线播放| 色噜噜狠狠成人中文综合| 少妇粉嫩小泬白浆流出| 天美传媒MV免费观看软件特色| 手机国产乱子伦精品视频| 天天摸天天做天天爽天天弄| 玩弄放荡人妻一区二区三| 无码熟妇人妻AⅤ在线电影| 午夜射精日本三级| 亚洲AV无码一区二区二三区软件| 亚洲VA久久久噜噜噜久久天堂| 亚洲国产精品成人午夜在线观看 | 忘忧草WWW中文在线资源| 无码日韩人妻AV一区二区三区| 性国产VIDEOFREE高清| 亚洲AV怡红院AV男人的天堂| 亚洲欧美一区二区成人片| 一本大道香蕉大L在线吗视频| 中文字AV字幕在线观看| 99在线国内在线视频22| しぼっちうぞ2在线观看1一| 成人综合伊人五月婷久久 | 欧美精品人妻AⅤ在线观视频免费| 欧美性爱亚洲色图| 日韩综合无码一区二区| 玩弄秘书的奶又大又软| 亚洲AV永久无码精品无码影片| 亚洲区激情区无码区| 在线播放无码后入内射少妇| 99久久久无码国产精品9|